Saturation of Nuclear Matter and Short-Range Correlations
Abstract
A fully self-consistent treatment of short-range correlations in nuclear matter is presented. Different implementations of the determination of the nucleon spectral functions for different interactions are shown to be consistent with each other. The resulting saturation densities are closer to the empirical result when compared with (continuous choice) Brueckner-Hartree-Fock values. Arguments for the dominance of short-range correlations in determining the nuclear matter saturation density are presented. A further survey of the role of long-range correlations suggests that the inclusion of pionic contributions to ring diagrams in nuclear matter leads to higher saturation densities than empirically observed. A possible resolution of the nuclear matter saturation problem is suggested.