E. Van den Broeck

Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines

E. Van den Broeck, B. Verbraeken, K. Dedecker, P. Cnudde, L. Vanduyfhuys, T. Verstraelen, K. Van Hecke, V. V. Jerca, S. Catak, R. Hoogenboom, V. Van Speybroeck
Macromolecules
53, 10, 3832-3846
2020
A1

Abstract 

Cation–dipole interactions were previously shown to have a rate-enhancing effect on the cationic ring-opening polymerization (CROP) of 2-oxazolines bearing a side-chain ester functionality. In line with this, a similar rate enhancement—via intermolecular cation−π interactions—was anticipated to occur when π-bonds are introduced into the 2-oxazoline side-chains. Moreover, the incorporation of π-bonds allows for facile postfunctionalization of the resulting poly(2-oxazoline)s with double and triple bonds in the side-chains via various click reactions. Herein, a combined molecular modeling and experimental approach was used to study the CROP reaction rates of 2-oxazolines with side-chains having varying degrees of unsaturation and side-chain length. The presence of cation−π interactions and the influence of the degree of unsaturation were initially confirmed by means of regular molecular dynamics simulations on pentameric systems. Furthermore, a combination of enhanced molecular dynamics simulations, static calculations, and a thorough analysis of the noncovalent interactions was performed to unravel to what extent cation−π interactions alter the reaction kinetics. Additionally, the observed trends were confirmed also in the presence of acetonitrile as solvent, in which experimentally the polymerization is performed. Most intriguingly, we found only a limited effect on the intrinsic reaction kinetics of the CROP and a preorganization effect in the reactive complex region. The latter effect was established by the unsaturated side-chains and the cationic center through a complex interplay between cation−π, π–π, π–induced dipole, and cation–dipole interactions. These findings led us to propose a two-step mechanism comprised of an equilibration step and a CROP reaction step. The influence of the degree of unsaturation, through a preorganization effect, on the equilibration step was determined with the following trend for the polymerization rates: n-ButylOx < ButenOx < ButynOx ≥ PentynOx. The trend was experimentally confirmed by determining the polymerization rate constants.

Open Access version available at UGent repository
Gold Open Access

The potential of anthocyanins from blueberries as a natural dye for cotton: A combined experimental and theoretical study

K.T. Phan, E. Van den Broeck, V. Van Speybroeck, K. De Clerck, K. Raes, S. De Meester
Dyes and Pigments
176, 108180
2020
A1

Abstract 

Natural dyes might be more environmentally sustainable compared to their synthetic counterparts, however in general their performance is worse. Therefore, typically metallic mordants are applied to improve the natural dye's affinity towards substrates, but this is not a suitable technique in a ‘green story’. In this paper, we test the potential of using anthocyanins from blueberry waste for dyeing cotton with biomordants, which are selected to tailor the intermolecular interactions such as hydrogen bonds, ionic bonds and π-π interactions with the dye molecule. In the experimental part, parameters during extraction and dyeing were optimized (e.g. temperature, pH, dyeing time and concentration). The effect of the (bio)mordants was monitored by Fourier transform infrared spectroscopy, spectrophotometric measurements and standard ISO wash and light tests. It was shown that stannous chloride stands out as metallic mordant, while no biomordants show sufficient intermolecular interactions to replace this metal salt. The experimental study has been corroborated with a series of molecular modeling calculations to obtain more insight into the intermolecular interactions between dye and (bio)mordants. To this end, both static Density Functional Theory based calculations as semi-empirical and force field based molecular dynamics calculations have been performed. The results indeed confirm that, in general, too small interaction energies for the biomordants of interest with the dye molecules are found, in correspondence with experimental findings. Overall, by performing systematic experiments in combination with the interpretation of the molecular models, this study yields valuable insights into the development of green routes towards use of anthocyanins as a natural dye for cellulose-based materials.

Open Access version available at UGent repository

Brønsted Acid Catalyzed Tandem Defunctionalization of Biorenewable Ferulic acid and Derivates into Bio-catechol

J. Bomon, E. Van den Broeck, M. Bal, Y. H. Liao, S. Sergeyev, V. Van Speybroeck, B. F. Sels, B. U. W. Maes
Angewandte Chemie int. Ed.
59 (8), 3063-3068
2020
A1

Abstract 

An efficient conversion of biorenewable ferulic acid into bio‐catechol has been developed. The transformation comprises two consecutive defunctionalizations of the substrate, that is, C−O (demethylation) and C−C (de‐2‐carboxyvinylation) bond cleavage, occurring in one step. The process only requires heating of ferulic acid with HCl (or H2SO4) as catalyst in pressurized hot water (250 °C, 50 bar N2). The versatility is shown on a variety of other (biorenewable) substrates yielding up to 84 % di‐ (catechol, resorcinol, hydroquinone) and trihydroxybenzenes (pyrogallol, hydroxyquinol), in most cases just requiring simple extraction as work‐up.

A switchable domino process for the construction of novel CO2‐sourced sulfur‐containing building blocks and polymers

F. Ouhib, B. Grignard, E. Van den Broeck, A. Luxen, K. Robeyns, V. Van Speybroeck, C. Jerome, C. Detrembleur
Angewandte Chemie int. Ed.
58 (34), 11768-11773
2019
A1

Abstract 

α‐Alkylidene cyclic carbonates (αCCs) recently emerged as attractive CO2‐sourced synthons for the construction of complex organic molecules. Herein, we report the transformation of αCCs into novel families of sulfur‐containing compounds by organocatalyzed chemoselective addition of thiols, following a domino process that is switched on/off depending on the desired product. The process is extremely fast and versatile in substrate scope, provides selectively linear thiocarbonates or elusive tetrasubstituted ethylene carbonates with high yields following a 100 % atom economy reaction, and valorizes CO2 as a renewable feedstock. It is also exploited to produce a large diversity of unprecedented functional polymers. It constitutes a robust platform for the design of new sulfur‐containing organic synthons and important families of polymers.

Reactivity of 3-oxo-β-lactams with respect to primary amines - an experimental and computational approach

N. Piens, H. Goossens, D. Hertsen, S. Deketelaere, L. Crul, L. Demeurisse, J. De Moor, E. Van den Broeck, K. Mollet, K. Van Hecke, V. Van Speybroeck, M. D'Hooghe
Chemistry - A European Journal
2017 (23), 1-9
2017
A1

Abstract 

The reactivity of 3-oxo-β-lactams with respect to primary amines was investigated in depth. Depending on the specific azetidin-2-one C4 substituent, this reaction was shown to selectively produce 3-imino-β-lactams (through dehydration), α-aminoamides (through CO elimination) or ethanediamides (through an unprecedented C3-C4 ring opening). In addition to the experimental results, the mechanisms and factors governing these peculiar transformations were also examined and elucidated by means of density functional theory calculations.

Pages

Subscribe to RSS - E. Van den Broeck