On Friday June 23rd, 2023 Massimo Bocus successfully defended his PhD thesis ‘Towards State-of-the-Art Molecular Simulations for an Accurate Modeling of Intricate Zeolite-Catalyzed reactions’. During his PhD research he was supervised by prof. Veronique Van Speybroeck.
Congratulations Massimo!
Summary of the PhD in laymen’s terms
Zeolites are ubiquitous catalysts in the chemical industry, playing a central role in oil refineries but also in newer and sustainable technologies, including biomass conversion and the conversion of CO2 to hydrocarbons. To understand their working mechanism thoroughly and assist experiments, molecular modeling can be used to investigate these crystalline microporous materials. Unfortunately, zeolite-catalyzed reactions are very complex at the atomic scale, where a multitude of factors can change the reaction outcome including (but not limited to) the presence of guest species, defects, active sites distribution and so on. In this thesis, we present a thorough investigation of several zeolite-catalyzed reactions with advanced molecular modeling techniques. We attempt to gradually improve the description of the working catalyst by first using techniques based on molecular dynamics, where the atoms can move around as they would do at realistic reaction temperatures. Additionally, we rely on state-of-the-art machine learning techniques to speed up our otherwise very computationally expensive simulations, showcasing how these allow for unprecedented insights in the reaction under study.