Maarten Cools-Ceuppens

A1 Publications

Published

2023

Modeling electronic response properties with an explicit-electron machine learning potential , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , Journal of Chemical Theory and Computation , Volume 18, Issue 3, Pages 1672-1691 , 2023 , IF: 6.44 , 50/165 [Q2]
Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics , M. Bocus, R. Goeminne, A. Lamaire, M. Cools-Ceuppens, T. Verstraelen, V. Van Speybroeck , Nature Communications , 14, 1008 , 2023 , IF: 17.694 , 6/74 [Q1]
Machine Learning Potentials for Metal-Organic Frameworks using an Incremental Learning Approach , S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser, T. Verstraelen, V. Van Speybroeck , npj Computational Materials , 9, 1, 19 , 2023
Quantum free energy profiles for molecular proton transfers , A. Lamaire, M. Cools-Ceuppens, M. Bocus, T. Verstraelen, V. Van Speybroeck , Journal of Chemical Theory and Computation , 19, 1, 18–24 , 2023 , IF: 6.578 , 7/36 [Q1]
Modeling Electronic Response Properties with an Explicit-Electron Machine Learning Potential , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , Journal of Chemical Theory and Computation , 18, 3, 1672-1691 , 2023

2022

Modeling Electronic Response Properties with an Explicit-Electron Machine Learning Potential , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , Journal of Chemical Theory and Computation (JCTC) , 18 (3), 1672–1691 , 2022 , IF: 6.006 , 5/37 [Q1]

2021

IOData: A python library for reading, writing, and converting computational chemistry file formats and generating input files , T. Verstraelen, W. Adams, L. Pujal, A. Tehrani, B. D. Kelly, L. Macaya, F. Meng, M. Richer, R. Hernández-Esparza, X. D. Yang, M. Chan, T. D. Kim, M. Cools-Ceuppens, V. Chuiko, E. Vohringer-Martinez, P.W. Ayers, F. Heidar-Zadeh , Journal of Computational Chemistry , 45, 6, 458--464 , 2021 , IF: 3.672 , 88/179 [Q2]

Other Publications

Dissertations

(D1) , Incorporating long-range interactions and polarization in machine learning potentials with explicit electrons , M. Cools-Ceuppens , Supervisor(s): prof. dr. ir. T. Verstraelen; prof. dr. ir. J. Dambre , 15/09/2022
(D2) , Uncertainty prediction in molecular simulations using ab initio derived force fields , M. Cools-Ceuppens , Supervisor(s): Prof. Dr. ir. Toon Verstraelen , 2017

Keynote / Plenary / Invited talks

Talks

2022 - 2024

Nuclear quantum effects in proton transfer reactions , A. Lamaire, M. Bocus, R. Goeminne, S. Vandenhaute, M. Cools-Ceuppens, T. Verstraelen, V. Van Speybroeck , Quantum2 on machine learning enhanced sampling , Lausanne, Switzerland , Wed, 29/11/2023 to Fri, 01/12/2023
The influence of nuclear quantum effects on proton hopping kinetics in the H-SSZ-13 zeolite through ab initio derived machine learning potentials , M. Bocus, R. Goeminne, A. Lamaire, M. Cools-Ceuppens, T. Verstraelen, V. Van Speybroeck , NCCC XXIII , Noordwijkerhout,The Netherlands , Mon, 09/05/2022 to Wed, 11/05/2022

2021

The eMLP: a novel machine learning potential to model electronic properties with explicit-electrons , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , AutoCheMo International Reactive Force Field Workshop , Ghent, Belgium , Wed, 08/12/2021 to Thu, 09/12/2021

2018

Evaluating a linear machine learning force field for aluminium , M. Cools-Ceuppens, T. Verstraelen , L'intelligence artificielle pour la chimie des matériaux , Paris, France , Tue, 25/09/2018

Posters

2019

Comparing Different Machine Learning Force Fields: A Case Study of Aluminium , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , MOFSIM 2019 , Ghent, Belgium , Wed, 10/04/2019 to Fri, 12/04/2019

2018

Machine learning and materials science: ab initio screening to microstructure analysis , M. Larmuseau, M. Cools-Ceuppens, M. Sluydts, T. Verstraelen, S. Cottenier , 34th winter school in theoretical chemistry: Machine Learning in Theoretical Chemistry , Helsinki, Finland , Mon, 10/12/2018 to Thu, 13/12/2018
Comparing different machine learning force fields: a case study of aluminium , M. Cools-Ceuppens, J. Dambre, T. Verstraelen , The 34th Winter School in Theoretical Chemistry: Machine Learning , Helsinki, Finland , Mon, 10/12/2018 to Thu, 13/12/2018

Funding