Questaal v7.14.1 / FP-LMTO

name and version of the code: Questaal version v7.14.1 type of basis set: Linear Muffin-Tin Orbitals method: all-electron

GENERAL INFORMATION

exchange-correlation functional	PBE				
relativistic scheme	core and valence scalar relativistic				
	(Koelling-Harmon [1])				
assignment of core / valence states	see table				
basis set	augmented smoothed Hankel functions [2]				
k-mesh density	see table				
reciprocal-space integration method	linear tetrahedron method				
METHOD-SPECIFIC INFORMATION					
muffin-tin radii	touching spheres at the smallest volume teste				
basis set size	2 basis functions per l, m (2- κ basis) with $l \leq$				
	partial wave expansion with $l \leq LMXA$ (see tab				
local orbitals and LAPW	extended local orbitals for semi-core states				

touching spheres at the smallest volume tested 2 basis functions per l, m (2- κ basis) with $l \leq \text{LMX}$ partial wave expansion with $l \leq \text{LMXA}$ (see table) extended local orbitals for semi-core states combined LMTO/APW basis for molecular cases local orbitals for higher n (see comments and table) overlapping frozen atomic core density

core treatment

ADDITIONAL COMMENTS

- 1. Each LMTO basis function is defined by two parameters, the smoothing radius (RSMH) and the Hankel energy (EH). The two basis functions per l are constructed with different RSMH using an automatic system in which the Hankel energy is a free parameter EH=-0.5 Ryd is used here for all systems.
- 2. The criteria for inclusion of states as semi-core are the leaked charge or atomic eigenvalue: $q(r > R_{mt}) > 2e-3$ or e > -2.2Ryd. "Extended" local orbitals include smoothed Hankel tails fitted to the semi-core K.E at the muffin-tin radius.
- 3. Some high-lying local orbitals are included: e.g., the 3d transition elements are treated with the 4d states as local orbitals.
- 4. An additional LAPW basis is used in combination with the LMTO basis when the (touching) muffin-tin spheres fill <30% of the cell.
- 5. Full details of the calculations can be found in the source distribution.

REFERENCES

- [1] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State 10, 3107–3114 (1977).
- [2] E. Bott, M. Methfessel, W. Krabs and P. C. Schmidt, J. Math. Phys. 39, 3393-3425 (1998).

Questaal v7.14.1 / FP-LMTO

Table I. Calculation settings and fitted equation of state results for each element: k-point grid, muffin-tin radius, l cut-offs for basis and augmentation, specification of semi-core and *high-lying* local orbitals and the plane-wave cut-off for additional LAPW basis, if present.

	NKABC	R _{mt}	LMAX	LMAXA	local	LAPW	V_0	B_0	B_1
		(Bohr)			orbitals	(Ryd)	$(\text{Å}^3/\text{at})$	(GPa)	1
Н	$6\ 6\ 4$	0.695	1	2		4.0	17.401	10.286	2.91
He	$6\ 6\ 3$	2.708	1	2					
Li	23 23 23	2.821	2	3			20.201	13.853	3.35
Be	23 23 13	2.048	2	3			7.895	123.443	3.32
В	777	1.597	2	3			7.205	239.564	3.46
\mathbf{C}	$16\ 16\ 4$	1.319	2	3		2.0	11.635	206.530	4.01
Ν	$5\ 5\ 5$	1.030	2	3		4.0	28.833	52.396	1.97
Ο	666	1.140	2	3		4.0	18.679	50.849	3.83
\mathbf{F}	5 9 5	1.320	2	3		4.0	19.219	38.000	4.75
Ne	$5\ 5\ 5$	3.025	2	3			24.532	0.855	-2.45
$\mathbf{N}\mathbf{a}$	18 18 18	3.463	2	3	2p		37.106	7.793	3.72
Mg	30 30 16	2.939	2	3			22.959	36.582	4.03
Al	12 12 12	2.644	2	3			16.491	77.908	4.99
Si	13 13 13	2.191	2	3			20.454	87.341	4.33
Р	$17\ 5\ 12$	2.058	2	3		2.0	21.640	66.466	4.27
\mathbf{S}	22 22 22	2.389	2	3			17.072	89.015	4.19
Cl	484	1.848	2	3		4.0	39.393	19.787	3.50
Ar	555	3.895	2	3	3s		56.226	0.810	-0.53
Κ	13 13 13	4.237	3	4	$_{3\mathrm{p,}4d}$		73.768	3.616	3.75
Ca	19 19 19	3.616	3	4	$_{3p,4d}$		42.289	17.504	3.28
\mathbf{Sc}	21 21 12	2.976	3	4	$_{3\mathrm{p,}4d}$		24.646	55.135	3.44
Ti	$15\ 15\ 8$	2.664	3	4	$_{3\mathrm{p,}4d}$		17.406	113.080	3.63
V	$15 \ 15 \ 15$	2.403	3	4	$_{3p,4d}$		13.461	183.653	3.90
Cr	19 19 19	2.301	3	4	$_{3\mathrm{p,}4d}$		11.759	184.827	7.11
Mn	15 15 15	2.353	3	4	$_{3p,4d}$		11.443	120.279	0.66
Fe	999	2.271	3	4	$_{3p,4d}$		11.355	201.389	5.63
Co	$16\ 16\ 9$	2.293	3	4	4d		10.884	213.286	3.92
Ni	13 13 13	2.306	3	4	4d		10.909	200.088	5.14
Cu	21 21 21	2.380	3	4	4d		11.942	139.805	4.94
Zn	27 27 13	2.463	3	4	4d		15.185	74.744	5.29
Ga	32 19 32	2.349	3	4	3d		20.313	48.649	5.28
Ge	17 17 17	2.309	3	4	3d		23.914	58.045	4.89
As	27 27 8	2.366	3	4			22.652	69.459	4.28
\mathbf{Se}	10 10 8	2.225	3	4		2.0	29.906	47.059	4.39
Br	$5\ 10\ 5$	2.187	3	4		2.0	39.414	26.195	2.13
Kr	$5\ 5\ 5$	4.207	3	4	4s		67.096	0.509	-5.04
Rb	10 10 10	4.546	3	4	$4\mathrm{p}, 5d$		91.114	2.809	3.74
Sr	21 21 21	3.939	3	4	$4\mathrm{p}, 5d$		54.554	11.432	4.41
Υ	17 17 9	3.274	3	4	$4\mathrm{p}, 5d$		32.905	41.934	3.31
Zr	20 20 11	2.959	3	4	$4\mathrm{p}, 5d$		23.427	94.614	3.22
Nb	$15 \ 15 \ 15$	2.663	3	4	$4\mathrm{p}, 5d$		18.122	171.090	3.90
Mo	14 14 14	2.540	3	4	$4\mathrm{p}, 5d$		15.787	261.711	4.24
Tc	22 22 12	2.522	3	4	4p, 5d		14.449	300.855	4.55
Ru	27 27 15	2.466	3	4	$4\mathrm{p}, 5d$		13.757	313.631	4.90
$\mathbf{R}\mathbf{h}$	13 13 13	2.514	3	4	4p, 5d		14.039	258.728	5.23
Pd	24 24 24	2.587	3	4	4p, 5d		15.294	170.649	5.62
Ag	24 24 24	2.725	$\mid 3$	4	5d		17.796	91.658	5.92

Questaal v7.14.1 / FP-LMTO

Cd	26 26 12	2.811	3	4	5d		22.796	44.354	7.04
In	$14 \ 14 \ 9$	3.052	3	4	5d		27.440	35.913	5.22
Sn	$16 \ 16 \ 16$	2.667	3	4	4d		36.899	35.007	4.75
Sb	$17\ 17\ 6$	2.735	3	4	4d		31.716	50.810	4.48
Te	$14 \ 14 \ 9$	2.680	3	4			34.804	46.791	4.67
Ι	$5\ 10\ 4$	2.560	3	4		2.0	50.493	19.387	3.98
Xe	$5\ 5\ 5$	4.617	3	4	5s		86.475	0.257	-13.02
\mathbf{Cs}	$12 \ 12 \ 12$	4.939	3	4	5s, 5p, 6d		117.081	1.963	3.36
Ba	$13\ 13\ 13$	4.029	3	4	5p, 6d		63.431	8.764	3.13
Lu	$17\ 17\ 9$	3.158	3	4	5p,6d,5f		29.076	47.184	3.48
Hf	$15\ 15\ 8$	2.902	3	4	5p,6d,5f		22.538	107.760	3.42
Ta	$22 \ 22 \ 22$	2.662	3	4	5p,6d,5f		18.280	194.171	3.86
W	$23 \ 23 \ 23$	2.556	3	4	5p, 6d, 5f		16.141	303.169	4.23
Re	$21 \ 21 \ 11$	2.549	3	4	5p, 6d		14.967	366.638	4.55
Os	$23 \ 23 \ 13$	2.497	3	4	5p, 6d		14.282	399.010	4.85
Ir	$21 \ 21 \ 21$	2.537	3	4	5p, 6d		14.501	349.274	5.15
Pt	$19 \ 19 \ 19$	2.602	3	4	5p, 6d		15.633	250.112	5.53
Au	18 18 18	2.731	3	4	6d		17.926	141.311	5.93
Hg	$11 \ 11 \ 13$	3.147	3	4	6d		29.102	10.750	10.11
Tl	$30 \ 30 \ 17$	3.240	3	4	5d		31.426	27.114	5.34
Pb	$24 \ 24 \ 24$	3.301	3	4	5d		32.014	40.648	4.74
Bi	$26\ 26\ 9$	2.881	3	4	5d		36.651	44.295	4.50
Ро	18 18 18	3.099	3	4			37.405	48.502	4.49
Rn	555	4.708	3	4	6s		83.371	0.151	-6.33