FPLO/T+F+s

FPLO 14.00-49 / enhanced LO basis + fixed compact support

name and version of the code: FPLO 14.00-49 type of basis set: numerical atom-centered local orbitals method: all-electron

GENERAL INFORMATION

exchange-correlation functional relativistic scheme	PBE core and valence scalar relativistic (Koelling-Harmon)
assignment of core / valence states basis set size	see Section additional comments and table enhanced (see below): 21-56 basis orbitals (typical basis set size of 35)
k-mesh density	see table (number of k-points in the full 1st Brillouin zone of the primitive cell, $\# k$)
reciprocal-space integration method	linear tetrahedron method
METHOD-SPECIFIC INFORMATION	
numerical settings	all settings are default settings

except for the basis, the compact support and k-mesh (see below and table).

ADDITIONAL COMMENTS

We enhanced the default basis according to the following scheme. The core and semi-core orbitals stay untouched. A double valence basis orbital (e.g. 3d4d) becomes a triple basis orbital (e.g. 3d4d5d) with the charge parameter $Q_3 = Q_2 + 2$ and compression parameter $P_3 = \max(0.85, P_2)$. A single valence basis orbital becomes a double basis orbital with $Q_2 = Q_1 + 2$ and $P_2 = \max(0.85, P_1)$. An additional *f*-orbital is added with Q = 4 and P = 1. For H and He additionally a single *d*-orbital (Q = 5, P = 1) is added to the default basis. The compact support radius was fixed for all volumes to its default value at the equilibrium volume. This option is only needed for very soft elements. We use it for all elements for consistency. In the table below, the basis orbitals, e.g. D3p = 3p4p, Tnl means triple basis orbitals, e.g. T3p = 3p4p5p. The additional nominal 5*f* orbital for Lu is of course not identical to the 5*f* part of its T4*f* basis states but rather an effective 7*f* state. The use of the linear tetrahedron method allows to keep the relatively small default *k*-mesh, except for the cases C, Al, Ag, where we used a higher *k*-point number for testing reasons.

REFERENCES

code

- [1] K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999)
- [2] www.fplo.de

scalar relativity

[3] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State 10, 3107–3114 (1977).

reciprocal-space integration

[4] G. Lehmann and M. Taut, Phys. Status Solidi B 54, 469–477 (1972).

FPLO/T+F+s

FPLO 14.00-49 / enhanced LO basis + fixed compact support

Table I. Calculation settings and results per element: k-point mesh in the full 1st Brillouin zone of the primitive cell *kpts* and number of irreducible k-points # k, valence, equilibrium volume per atom V_0 , bulk modulus B_0 , pressure derivative of the bulk modulus B_1 .

	knte [_]	# k [_]	semi-core/valence	$V_{\rm o}$ [Å ³ /atom]	B _o [CP ₂]	B. [_]
Н	$12 \times 12 \times 12$	$\frac{\# \kappa []}{1728}$	/ T1 s D2n Af 3d	17416	$\frac{D_0 [01 a]}{10.230}$	$\frac{D_1}{2.787}$
Ηο	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	/ T1s D2p + f 3d	17 907	0.721	6 620
Li	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	$1e^{-113}D2p + 5u^{-1}$	20.187	14 044	3 204
Be	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	1s / T2s T2p D3d 4f	7 875	128 283	2.204 2.983
B	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	13 / 123 12p D3a 4f 1e / T2e T2p D3d Af	7 151	251 656	2.500 3.253
C	$12 \times 12 \times 12$ 12×30	1 3 20	13 / 123 12p D3a 4f 1e / T2e T2p D3d Af	11 612	210.856	3.464
N	$12 \times 12 \times 50$ $12 \times 12 \times 12$	4520 1728	13 / 123 12p D3a 4f 1e / T2e T2p D3d Af	28 860	53 468	3.404
0	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	13 / 123 12p D3a 4f 1e / T2e T2p D3d Af	18 670	40 820	3.050 3.072
F	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	13 / 123 12p D3a 4f 1e / T2e T2p D3d Af	10.070	33.020	1 038
Ne	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	13 / 123 12p D3a 4f 1s / T2s T2p D3d 4f	24 473	1 320	4.050 6.856
Na	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	$2 \circ 2n / T_{2} \circ T_{2} n D_{3} d 4f$	36 671	8 485	3 166
Mo	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	2s 2p / 10s 10p D0a 4f 2s 2n / T3s T3n D3d 4f	22 857	36 700	4 009
	$12 \times 12 \times 12$ $30 \times 30 \times 30$	27 000	2s 2p / 10s 10p D0a 4f 2s 2n / T3s T3n D3d 4f	16 460	78 338	4.600
Si	$12 \times 12 \times 12$	1 728	2s 2p / 10s 10p D0a 4f 2s 2n / T3s T3n D3d 4f	20 448	89.612	4 316
P	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	23 2p / 133 13p D3a 4f 2e 2n / T3e T3n D3d 4f	20.440	60 231	4.010
S	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	2s 2p / 10s 10p D0a 4f 2s 2n / T3s T3n D3d 4f	17 171	85 775	4.033
Cl	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	23 2p / 133 13p D3a 4f 2e 2n / T3e T3n D3d 4f	30 117	18 601	4.000
Δr	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	23 2p / 133 13p D3a 4f 2e 2n / T3e T3n D3d 4f	52 751	0.668	4.401
K	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	23 2p / 133 13p D3a 4f 3s 3n / T4s D4n T3d 4f	73 618	3 634	3.674
Ca	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	3s 3n / T4s D4n T3d 4f	42 049	18.471	2 626
Sc	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	3s 3n / T4s T3d D4n 4f	24 594	55 191	3 388
Ti	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	17 385	113 008	3.476
V	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	13 / 35	113.030 183.541	3.470
Cr	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	11 763	187.601	7 436
Mn	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	11.705	101.001	8 208
Fo	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	11 351	101.105 103.245	5.230 5.231
	$12 \times 12 \times 12$ $19 \times 19 \times 19$	1720 1728	3s 3p / T4s T3d D4p 4f	10.880	217588	5.251 5.055
Ni	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1720 1728	3s 3n / T4s T3d D4n 4f	10.000	199 949	4 840
Cu	$12 \times 12 \times 12$ 12×12	1720 1728	3s 3n / T4s T3d D4n 4f	11 976	141 049	4 912
Zn	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n / T4s T3d D4n 4f	15 205	75 275	5 178
Ga	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n 3d / T4s T4n D4d 4f	20 144	53 313	4 927
Ge	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1 728	3s 3n 3d / T4s T4n D4d 4f	23 932	58.748	4 903
As	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n 3d / T4s T4n D4d 4f	20.502 22 599	68 041	4 117
Se	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n 3d / T4s T4n D4d 4f	29 730	47 950	4 356
Br	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n 3d / T4s T4n D4d 4f	39 560	22 399	4 801
Kr	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	3s 3n 3d / T4s T4n D4d 4f	66 250	0.685	6 981
Rh	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	4s 4n / T5s D5n T4d 4f	90.498	2.925	3551
Sr	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	4s 4n / T5s D5n T4d 4f	54 421	11754	4.369
Y	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	4s 4n / T5s T4d D5n 4f	32 761	42.457	3.021
Zr	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	23.355	95.945	3.286
Nb	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	4s 4n / T5s T4d D5n 4f	18 112	170.838	3.200
Mo	$12 \times 12 \times 12$ $12 \times 12 \times 12$	1728	4s 4n / T5s T4d D5n 4f	15 790	$262\ 153$	4 249
Tc	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	14.475	297.705	4.348
Ru	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	13.802	$\frac{201100}{311,999}$	4.809
Rh	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	14.095	258.215	4.981
Pd	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	15.349	173.757	5.380
Ag	$30 \times 30 \times 30$	27 000	4s 4p / T5s T4d D5p 4f	17.876	91.828	5.729
Cd	$12 \times 12 \times 12$	1728	4s 4p / T5s T4d D5p 4f	22.877	44.230	6.688
	I		± , ± ,	L		

FPLO/T+F+s

FPLO 14.00-49 / enhanced LO basis + fixed compact support

In	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	27.474	36.355	5.227
Sn	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	36.748	37.120	4.718
\mathbf{Sb}	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	31.701	51.432	4.495
Te	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	35.074	44.726	4.656
Ι	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	50.758	18.094	5.013
Xe	$12 \times 12 \times 12$	1728	$4s \ 4p \ 4d \ / \ T5s \ D5d \ T5p \ 4f$	88.064	0.484	9.704
\mathbf{Cs}	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T}6s \ \mathrm{T}5d \ \mathrm{D}6p \ 4f$	116.596	1.968	3.455
Ba	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T6}s \ \mathrm{D5}d \ \mathrm{D6}p \ 4f$	63.231	8.927	3.873
Lu	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T}6s \ \mathrm{T}5d \ \mathrm{D}6p \ \mathrm{T}4f \ 5f$	29.065	47.356	3.411
$_{\mathrm{Hf}}$	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	22.514	108.991	3.395
Ta	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	18.289	193.127	3.695
W	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	16.165	303.073	4.203
Re	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	14.989	361.595	4.402
Os	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	14.313	395.763	4.793
Ir	$12 \times 12 \times 12$	1728	4f 5s 5p / T6s T5d D6p 5f	14.545	345.626	4.945
\mathbf{Pt}	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T}6s \ \mathrm{T}5d \ \mathrm{D}6p \ 5f$	15.703	245.707	5.290
Au	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T}6s \ \mathrm{T}5d \ \mathrm{D}6p \ 5f$	18.062	138.811	5.251
Hg	$12 \times 12 \times 12$	1728	$5s \ 5p \ / \ \mathrm{T}6s \ \mathrm{T}5d \ \mathrm{D}6p \ 5f$	29.925	7.571	8.395
Tl	$12 \times 12 \times 12$	1728	$5s\ 5p\ 5d\ /\ {\rm T6}s\ {\rm D6}d\ {\rm T6}p\ 5f$	31.424	27.221	5.134
\mathbf{Pb}	$12 \times 12 \times 12$	1728	$5s\ 5p\ 5d\ /\ {\rm T6}s\ {\rm D6}d\ {\rm T6}p\ 5f$	31.985	40.331	4.575
Bi	$12 \times 12 \times 12$	1728	$5s\ 5p\ 5d\ /\ {\rm T6}s\ {\rm D6}d\ {\rm T6}p\ 5f$	36.868	42.959	4.691
Po	$12 \times 12 \times 12$	1728	$5s\ 5p\ 5d\ /\ {\rm T6}s\ {\rm D6}d\ {\rm T6}p\ 5f$	37.558	45.949	4.855
Rn	$12 \times 12 \times 12$	1728	$5s\ 5p\ 5d\ /\ {\rm T6}s\ {\rm D6}d\ {\rm T6}p\ 5f$	94.269	0.537	7.620