JTH02/ABINIT

JTH2 PAW dataset / ABINIT 7.7.3

name and version of the code: ABINIT 7.7.3 type of basis set: plane waves method: projector-augmented wave (JTH2)

GENERAL INFORMATION

exchange-correlation functional relativistic scheme

assignment of core / valence states basis set size k-mesh density PBE core and valence scalar relativistic (Koelling-Harmon) see table cutoff energy = 20 Ha 6750/N k-points in the full first Brillouin zone of an N-atom cell Fermi-Dirac smearing with a fictitious temperature corresponding to 0.002 Ha

reciprocal-space integration method

METHOD-SPECIFIC INFORMATION

PAW radii PAW cutoff energy PAW cutoff augmentation energy Partial-wave basis size see table (R_{PAW}) 20 Ha 40 Ha 2 elements per ℓ -value except for H, He, Li (one p element) and In, K, Kr, Pb, Rb and Sn (one d element)

ADDITIONAL COMMENTS

PAW dataset generator

ATOMPAW 4.0.0.8

REFERENCES

PAW dataset

- [1] http://pwpaw.wfu.edu
- [2] http://www.abinit.org/downloads/PAW2
- [3] F. Jollet, M. Torrent and N. Holzwarth, Comput. Phys. Commun. 185, 1246–1254 (2014).

code

- [4] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty and D. C. Allan, *Comput. Mater. Sci.* 25, 478–492 (2002).
- [5] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah and J. W. Zwanziger, *Comput. Phys. Commun.* 180, 2582–2615 (2009).
- [6] M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze, Comput. Mater. Sci. 42, 337–351, (2008).

scalar relativity

[7] D. D. Koelling and B. N. Harmon, J. Phys. C: Solid State 10, 3107–3114 (1977).

JTH02/ABINIT JTH2 PAW dataset / ABINIT 7.7.3

	valence	R_{PAW} [a.u.]	$V_0 [A^3/atom]$	$B_0 [\text{GPa}]$	B_1 [-]
Η	$1s^1 2p^0$	0.9	17.49784	10.19793	3.158
He	$1s^2 2p^0$	1.3	17.82456	0.83536	6.413
Li	$1s^2 2s^1 2p^0$	1.6	20.23660	13.80609	3.344
Be	$1s^2 2s^2$	1.3	7.90864	122.23486	2.890
В	$2s^2 2p^1$	1.7	7.24518	237.25091	3.487
С	$2s^2 2p^2$	1.5	11.67933	212.34059	2.615
N	$2s^2 2p^3$	1.2	28.93191	55.07215	2.964
0	$2s^2 2n^4$	14	18 58084	51 38422	3 881
F	$\frac{2s}{2s^2} \frac{2p}{2n^5}$	1.1	19 17107	35 54535	4.280
Ne	$2s^{2} 2p^{6}$ $2s^{2} 2n^{6}$	1.1	24 24011	1 32984	13 318
Na	$25^{2} 2p^{6}$ $2s^{2} 2p^{6} 3s^{1}$	1.0	37 14517	7.96228	3165
Ma	25 2p 55 $2s^2 2p^6 3s^2$	1.0	22 00173	35 65411	4 979
A1	25 2p 55 $2c^2 2p^1$	1.9	16 47447	7774370	4.212
C;	3s 3p $3c^2 3n^2$	1.9	10.47447	00 70771	4.000
	əs əp ə_2 ə_3	1.9	20.43003	00.10111	4.302
P C	$3s 3p^{-1}$	1.9	21.43044	07.00075	4.575
S Cl	$3S^{-}3D^{-}$	1.9	17.10799	83.08790	4.129
CI .	$3s^2 3p^2$	1.8	38.88399	18.80925	4.305
Ar	$3s^2 3p^6$	1.8	52.20238	0.75000	6.572
K	$3s^2 3p^6 4s^1 3d^6$	2.1	73.78410	3.62429	3.657
Ca	$3s^2 3p^0 4s^2 3d^0$	1.9	42.13759	17.44248	3.821
Sc	$3s^2 3p^6 4s^2 3d^1$	2.4	24.62186	54.28881	3.361
Ti	$3s^2 3p^6 4s^1 3d^3$	2.3	17.44179	111.26898	3.586
V	$3s^2 3p^6 4s^2 3d^3$	2.2	13.49462	180.72451	3.812
Cr	$3s^2 3p^6 4s^1 3d^5$	2.1	11.76507	176.02398	6.499
Mn	$3s^2 3p^6 4s^1 3d^6$	2.1	11.46933	109.23894	1.795
Fe	$3s^2 3p^6 4s^1 3d^7$	2.1	11.35042	188.26412	4.337
Co	$3s^2 3p^6 4s^1 3d^8$	2.1	10.88408	212.91538	5.008
Ni	$3s^2 3p^6 4s^2 3d^8$	1.8	10.92726	195.27345	4.504
Cu	$3s^2 3p^6 4s^1 3d^{10}$	2.0	11.98367	143.88972	3.113
Zn	$4s^2 4p^0 3d^{10}$	2.3	15.17410	75.61000	5.861
Ga	$4s^2 4p^1 3d^{10}$	2.1	20.35737	48.97476	5.259
Ge	$4s^2 4p^2 3d^{10}$	2.3	23.95958	58.74576	4.844
As	$4s^2 4p^3$	2.1	22.62141	68.66612	4.408
Se	$4s^2 4p^4$	2.2	29.76678	47.18222	4.410
Br	$4s^2 4p^5$	2.2	39.42359	22.42968	4.955
\mathbf{Kr}	$4s^2 4p^6 4d^0$	2.2	65.58856	0.66720	7.045
Rb	$4s^2 4p^6 5s^1 4d^0$	2.3	91.35346	2.76524	3.710
Sr	$4s^2 4p^6 5s^1 4d^1$	2.3	54.83515	11.56932	3.512
Y	$4s^2 4p^6 5s^2 4d^1$	2.21	32.87966	40.84792	3.095
Zr	$4s^2 4p^6 5s^1 4d^3$	2.21	23.39635	93.35861	3.307
Nb	$4s^2 4p^6 5s^1 4d^4$	2.21	18.13436	169.29464	3.675
Мо	$4s^2 4p^6 5s^1 4d^5$	2.2	15.81522	259.13798	4.065
Tc	$4s^2 4p^6 5s^1 4d^6$	2.2	14 42049	300 50292	4 496
B11	$4s^2 4p^6 5s^1 4d^7$	2.2	13 75825	310 20598	4 882
Bh	$4s^2 4p^6 5s^1 4d^8$	2.2	14 02331	259 21608	5 1 9 9
Pd	$4s^2 4p^6 5s^1 4d^9$	2.4	15 34098	$165\ 54672$	5 834
Aa	$5s^{1} 5n^{0} 4d^{10}$	2.0 9.5	17 89774	01 16085	5.846
Cd	$5s^{2} 5n^{0} 4d^{9.5}$	2.0	22 82052	13 06981	6 457
Uu In	$5s^{2} 5n^{1} 5d^{0}$	2.0	22.03932	40.00201 36 80202	5 994
111	os op ou	2.9	21.00000	00.03030	0.224

Table I. Calculation settings and results per element: valence, PAW radius R_{PAW} , equilibrium volume per atom V_0 , bulk modulus B_0 , pressure derivative of the bulk modulus B_1 .

JTH02/ABINIT

JTH2 PAW dataset / ABINIT 7.7.3 $\,$

Sn	$5s^2 5p^2 5d^0$	2.7	36.90498	36.06134	4.883
\mathbf{Sb}	$5s^2 5p^3$	2.3	31.81108	50.69800	4.654
Te	$5s^2 5p^4$	2.3	34.97177	45.14244	4.735
Ι	$5s^2 5p^5$	2.3	50.40996	18.73037	5.018
Xe	$5s^2 5p^6$	2.4	86.82364	0.53258	3.803
\mathbf{Cs}	$5s^2 5p^6 6s^1 5d^0$	2.2	117.24092	1.95497	4.664
Ba	$5s^2 5p^6 6s^2 5d^0$	2.3	63.61502	8.95960	1.790
Lu	$5s^2 5p^6 6s^2 5d^1 4f^{14}$	2.5	29.05320	47.69130	3.517
Hf	$5s^2 5p^6 6s^2 5d^2$	2.41	22.54152	107.55827	3.302
Ta	$5s^2 5p^6 6s^2 5d^3$	2.41	18.30307	195.82211	3.794
W	$5s^2 5p^6 6s^2 5d^4$	2.41	16.15981	304.55240	4.143
Re	$5s^2 5p^6 6s^2 5d^5$	2.4	14.96913	365.51908	4.377
Os	$5p^{6} 6s^{1} 5d^{7}$	2.5	14.29122	401.51823	4.791
Ir	$5p^{6} 6s^{1} 5d^{8}$	2.5	14.50797	349.66966	5.029
Pt	$6s^1 6p^0 5d^9$	2.5	15.67922	250.16206	5.560
Au	$6s^1 6p^0 5d^{10}$	2.5	18.01120	140.30086	5.501
Hg	$6s^2 6p^0 5d^{10}$	2.4	29.54526	9.07820	12.115
Tl	$6s^2 6p^1$	2.9	31.42148	27.79113	5.431
Pb	$6s^2 6p^2 6d^0$	2.9	32.01765	41.11989	5.147
Bi	$6s^2 6p^3$	2.9	36.92422	43.23146	4.717
Po	$6s^2 6p^4$	2.9	37.57022	46.08312	4.848
Rn	$6s^2 6p^6$	2.3	92.79747	0.61552	8.806