Journal of Physics: Conference series

284, 102020

2011

A1

Published while none of the authors were employed at the CMM

### Abstract

A connection is made between the exact eigen states of the BCS Hamiltonian and the predictions made by the Tamm-Dancoff Approximation. This connection is made by means of a parametrised algebra, which gives the exact quasi-spin algebra in one limit of the parameter and the Heisenberg-Weyl algebra in the other. Using this algebra to construct the Bethe Ansatz solution of the BCS Hamiltonian, we obtain parametrised Richardson-Gaudin equations, leading to the secular equation of the Tamm-Dancoff Approximation in the bosonic limit. An example is discussed in depth.