T. Verstraelen

Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of Metal Organic Frameworks

L. Vanduyfhuys, S. Vandenbrande, J. Wieme, M. Waroquier, T. Verstraelen, V. Van Speybroeck
Journal of Computational Chemistry
39 (16), p. 999-1011
2018
A1

Abstract 

QuickFF was originally launched in 2015 to derive accurate force fields for isolated and complex molecular systems in a quick and easy way. Apart from the general applicability, the functionality was especially tested for metal-organic frameworks (MOFs), a class of hybrid materials consisting of organic and inorganic building blocks. Herein, we launch a new release of the QuickFF protocol which includes new major features to predict structural, vibrational, mechanical and thermal properties with greater accuracy, without compromising its robustness and transparant workflow. First, the ab initio data necessary for the fitting procedure may now also be derived from periodic models for the molecular system, as opposed to the earlier cluster-based models. This is essential for an accurate description of MOFs with one dimensional metal-oxide chains. Second, cross terms that couple internal coordinates (ICs) and anharmonic contributions for bond and bend terms are implemented. These features are essential for a proper description of vibrational and thermal properties. Third, the fitting scheme was modified to improve robustness and accuracy. The new features are tested on MIL-53(Al), MOF-5, CAU-13 and NOTT-300. As expected, periodic input data is proven to be essential for a correct description of structural, vibrational and thermodynamic properties of MIL-53(Al). Bulk moduli and thermal expansion coefficients of MOF-5 are very accurately reproduced by static and dynamic simulations using the newly derived force fields which include cross terms and anharmonic corrections. For the flexible materials CAU-13 and NOTT-300, the transition pressure is accurately
predicted provided cross terms are taken into account.

Open Access version available at UGent repository
Gold Open Access

Exploring the substrate selectivity of human sEH and M. tuberculosis EHB using QM/MM

S. Rabi, A.H.G. Patel, S.K. Burger, T. Verstraelen, P.W. Ayers
Structural Chemistry
28 (5), 1501-1511
2017
A1

Abstract 

The mechanisms of human soluble epoxide hydrolase (sEH) and the corresponding epoxide hydrolase enzyme from Mycobacterium tuberculosis (EHB) are studied computationally, using the quantum mechanics/molecular mechanics (QM/MM) method. To do this, we modeled the alkylation and the hydrolysis steps of three substrates: trans-1,3-diphenylpropene oxide, trans-stilbene oxide and cis-stilbene oxide. Studying the regioselectivity for trans-1,3-diphenylpropene oxide, we determined that both enzymes prefer ring opening via attack on the benzylic carbon. In agreement with experimental studies, our computations show that the rate-limiting step is hydrolysis of the ester intermediate, with reaction barriers of approximately 13 to 18 kcal/mol. Using the barrier energies of this rate-limiting step, the three epoxides were ranked in order of reactivity. Though the reactivity order was correctly predicted for sEH, the predicted order for EHB did not correspond to experimental observations. Next, the electrostatic contributions of individual residues on the barrier height of the rate-limiting step were also studied. This revealed several residues important for catalysis. The secondary tritium kinetic isotope effect for the alkylation step was determined using a cluster model for the active site of sEH. The calculated value was 1.27, suggesting a late transition state for the rate-limiting step. Finally, we analyzed the reactivity trends using reactivity indicators from conceptual density functional theory, allowing us to identify ease of electron transfer as the primary driving force for the reaction.

Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields

S. Vandenbrande, T. Verstraelen, J. J. Gutierrez-Sevillano, M. Waroquier, V. Van Speybroeck
Journal of Physical Chemistry C
121 (45), 25309-25322
2017
A1

Abstract 

The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal-Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000 and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into to the host-guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored.

Open Access version available at UGent repository
Gold Open Access

The local response of global descriptors

F. Heidar-Zadeh, S. Fias, E. Vohringer-Martinez, T. Verstraelen, P.W. Ayers
Theoretical Chemistry Accounts
136 (1), 19
2017
A1

Abstract 

We consider the problem of defining an appropriate local descriptor corresponding to an arbitrary global descriptor. Although it does not seem easy to rigorously and uniquely define local analogues of derived global descriptors (e.g., the electrophilicity) or the fundamental global descriptors associated with the canonical ensemble (e.g., the hardness), the local response of these global descriptors can be defined unambiguously. We look at the local response of the global electrophilicity and compare it to the conventional, ad hoc, definition of the local electrophilicity. The local response of global nucleofugality and electrofugality is also discussed.

The Monomer Electron Density Force Field (MEDFF): A Physically Inspired Model for Non-Covalent Interactions

S. Vandenbrande, M. Waroquier, V. Van Speybroeck, T. Verstraelen
Journal of Chemical Theory and Computation (JCTC)
13 (1), 161–179
2017
A1

Abstract 

We propose a methodology to derive pairwise-additive noncovalent force fields from monomer electron densities without any empirical input. Energy expressions are based on the symmetry-adapted perturbation theory (SAPT) decomposition of interaction energies. This ensures a physically motivated force field featuring an electrostatic, exchange repulsion, dispersion, and induction contribution, which contains two types of parameters. First, each contribution depends on several fixed atomic parameters, resulting from a partitioning of the monomer electron density. Second, each of the last three contributions (exchange-repulsion, dispersion, and induction) contains exactly one linear fitting parameter. These three so-called interaction parameters in the model are initially estimated separately using SAPT reference calculations for the S66x8 database of noncovalent dimers. In a second step, the three interaction parameters are further refined simultaneously to reproduce CCSD(T)/CBS interaction energies for the same database. The limited number of parameters that are fitted to dimer interaction energies (only three) avoids ill-conditioned fits that plague conventional parameter optimizations. For the exchange repulsion and dispersion component, good results are obtained for all dimers in the S66x8 database using one single value for the associated interaction parameters. The values of those parameters can be considered universal and can also be used for dimers not present in the original database used for fitting. For the induction component such an approach is only viable for the dispersion dominated dimers in the S66x8 database. For other dimers (such as hydrogen-bonded complexes), we show that our methodology remains applicable. However, the interaction parameter needs to be determined on a case-specific basis. As an external validation:, the force field predicts interaction energies in good agreement with CCSD(T)/CBS values for dispersion dominated dimers extracted from an HIV-II protease crystal structure with a bound ligand (indinavir). Furthermore, experimental second virial coefficients of small alkanes and alkenes are well reproduced.

Open Access version available at UGent repository
Green Open Access

Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

S.M.J. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, V. Van Speybroeck
Chemistry of Materials
28 (16), 5721-5732
2016
A1

Abstract 

In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b01956

Open Access version available at UGent repository
Gold Open Access

An Explicit Approach to Conceptual Density Functional Theory Descriptors of Arbitrary Order

F. Heidar-Zadeh, M. Richer, S. Fias, R.A. Miranda-Quintana, M. Chan, M. Franco-Perez, C. Gonzalez-Espinoza, T.D. Kim, C. Lanssens, A.H.G. Patel, X.D. Yang, E. Vohringer-Martinez, C. Cárdenas, T. Verstraelen, P.W. Ayers
Chemical Physics Letters
660, 307–312
2016
A1

Abstract 

We present explicit formulas for arbitrary-order derivatives of the energy, grand potential, electron density, and higher-order response functions with respect to the number of electrons, and the chemical potential for any smooth and differentiable model of the energy versus the number of electrons. The resulting expressions for global reactivity descriptors (hyperhardnesses and hypersoftnesses), local reactivity descriptors (hyperFukui functions and local hypersoftnesses), and nonlocal response functions are easy to evaluate computationally. Specifically, the explicit formulas for global/local/nonlocal hypersoftnesses of arbitrary order are derived using Bell polynomials. Explicit expressions for global and local hypersoftness indicators up to fifth order are presented.

When is the Fukui Function Not Normalized? The Danger of Inconsistent Energy Interpolation Models in Density Functional Theory

F. Heidar-Zadeh, R.A. Miranda-Quintana, T. Verstraelen, P. Bultinck, P.W. Ayers, A. Buekenhoudt
Journal of Chemical Theory and Computation (JCTC)
12 (12), 5777–5787
2016
A1

Abstract 

When one defines the energy of a molecule with a noninteger number of electrons by interpolation of the energy values for integer-charged states, the interpolated electron density, Fukui function, and higher-order derivatives of the density are generally not normalized correctly. The necessary and sufficient condition for consistent energy interpolation models is that the corresponding interpolated electron density is correctly normalized to the number of electrons. A necessary, but not sufficient, condition for correct normalization is that the energy interpolant be a linear function of the reference energies. Consistent with this general rule, polynomial interpolation models and, in particular, the quadratic E vs N model popularized by Parr and Pearson, do give normalized densities and density derivatives. Interestingly, an interpolation model based on the square root of the electron number also satisfies the normalization constraints. We also derive consistent least-norm interpolation models. In contrast to these models, the popular rational and exponential forms for E vs N do not give normalized electron densities and density derivatives.

Minimal Basis Iterative Stockholder: Atoms-in-Molecules for Force-Field Development

T. Verstraelen, S. Vandenbrande, F. Heidar-Zadeh, L. Vanduyfhuys, V. Van Speybroeck, M. Waroquier, P.W. Ayers
Journal of Chemical Theory and Computation (JCTC)
12(8), 3894-3912
2016
A1

Abstract 

Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g. obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Sheffler scheme for dispersion interactions.

eReaxFF: A Pseudo-Classical Treatment of Explicit Electrons within Reactive Force Field Simulations

Md M. Islam, G. Kolesov, T. Verstraelen, E. Kaxiras, A.C.T. van Duin
Journal of Chemical Theory and Computation (JCTC)
12 (8), 3463-3472
2016
A1

Abstract 

We present a computational tool, eReaxFF, for simulating explicit electrons within the framework of the standard ReaxFF reactive force field method. We treat electrons explicitly in a pseudoclassical manner that enables simulation several orders of magnitude faster than quantum chemistry (QC) methods, while retaining the ReaxFF transferability. We delineate here the fundamental concepts of the eReaxFF method and the integration of the Atom-condensed Kohn–Sham DFT approximated to second order (ACKS2) charge calculation scheme into the eReaxFF. We trained our force field to capture electron affinities (EA) of various species. As a proof-of-principle, we performed a set of molecular dynamics (MD) simulations with an explicit electron model for representative hydrocarbon radicals. We establish a good qualitative agreement of EAs of various species with experimental data, and MD simulations with eReaxFF agree well with the corresponding Ehrenfest dynamics simulations. The standard ReaxFF parameters available in the literature are transferrable to the eReaxFF method. The computationally economic eReaxFF method will be a useful tool for studying large-scale chemical and physical systems with explicit electrons as an alternative to computationally demanding QC methods.

Pages

Subscribe to RSS - T. Verstraelen