M. Chan

IOData: A python library for reading, writing, and converting computational chemistry file formats and generating input files

T. Verstraelen, W. Adams, L. Pujal, A. Teherani, B. D. Kelly, L. Macaya, F. Meng, M. Richer, R. Hernández-Esparza, X. D. Yang, M. Chan, T. D. Kim, M. Cools-Ceuppens, V. Chuiko, E. Vohringer-Martinez, P.W. Ayers, F. Heidar-Zadeh
Journal of Computational Chemistry
45, 6, 458--464
2021
A1

Abstract 

IOData is a free and open‐source Python library for parsing, storing, and converting various file formats commonly used by quantum chemistry, molecular dynamics, and plane‐wave density‐functional‐theory software programs. In addition, IOData supports a flexible framework for generating input files for various software packages. While designed and released for stand‐alone use, its original purpose was to facilitate the interoperability of various modules in the HORTON and ChemTools software packages with external (third‐party) molecular quantum chemistry and solid‐state density‐functional‐theory packages. IOData is designed to be easy to use, maintain, and extend; this is why we wrote IOData in Python and adopted many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. This article is the official release note of the IOData library.

An Explicit Approach to Conceptual Density Functional Theory Descriptors of Arbitrary Order

F. Heidar-Zadeh, M. Richer, S. Fias, R.A. Miranda-Quintana, M. Chan, M. Franco-Perez, C. Gonzalez-Espinoza, T.D. Kim, C. Lanssens, A.H.G. Patel, X.D. Yang, E. Vohringer-Martinez, C. Cárdenas, T. Verstraelen, P.W. Ayers
Chemical Physics Letters
660, 307–312
2016
A1

Abstract 

We present explicit formulas for arbitrary-order derivatives of the energy, grand potential, electron density, and higher-order response functions with respect to the number of electrons, and the chemical potential for any smooth and differentiable model of the energy versus the number of electrons. The resulting expressions for global reactivity descriptors (hyperhardnesses and hypersoftnesses), local reactivity descriptors (hyperFukui functions and local hypersoftnesses), and nonlocal response functions are easy to evaluate computationally. Specifically, the explicit formulas for global/local/nonlocal hypersoftnesses of arbitrary order are derived using Bell polynomials. Explicit expressions for global and local hypersoftness indicators up to fifth order are presented.

Assessing The Accuracy Of New Geminal-Based Approaches

P. Tecmer, K. Boguslawski, P.A. Johnson, P.A. Limacher, M. Chan, T. Verstraelen, P.W. Ayers
Journal of Physical Chemistry A
118 (39), 9058–9068
2014
A1

Abstract 

We present a systematic theoretical study on the dissociation of diatomic molecules and their spectroscopic constants using our recently presented geminal-based wave function ansätze. Specifically, the performance of the antisymmetric product of rank two geminals (APr2G), the antisymmetric product of 1-reference-orbital geminals (AP1roG) and its orbital-optimized variant (OO-AP1roG) are assessed against standard quantum chemistry methods. Our study indicates that these new geminal-based approaches provide a cheap, robust, and accurate alternative for the description of bond-breaking processes in closed-shell systems requiring only mean-field-like computational cost. In particular, the spectroscopic constants obtained from OO-AP1roG are in very good agreement with reference theoretical and experimental data.

Subscribe to RSS - M. Chan