K. Hemelsoet

Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions

P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, D. Roeffaers, D. De Vos
Chemical Science
5 (11), 4517-4524
2014
A1

Abstract 

A new concept has been developed for generating highly dispersed base sites on metal-organic framework (MOF) lattices. The base catalytic activity of two alkaline earth MOFs, M2(BTC)(NO3)(DMF) (M = Ba or Sr, H3BTC = 1,3,5-benzenetricarboxylic acid, DMF = N,N-dimethylformamide) was studied as a function of their activation procedure. The catalytic activity in Knoevenagel condensation and Michael addition reactions was found to increase strongly with activation temperature. Physicochemical characterization using FTIR, 13C CP MAS NMR, PXRD, XPS, TGA-MS, SEM, EPR, N2 physisorption and nitrate content analysis shows that during activation, up to 85 % of the nitrate anions are selectively removed from the structure and replaced with other charge compensating anions such as O2-. The defect sites generated via this activation act as new strong basic sites within the catalyst structure. A fluorescence microscopic visualization of the activity convincingly proves that the activity is exclusively associated with the hexagonal crystals, and that reaction proceeds inside the crystal’s interior. Theoretical analysis of the Ba-material shows that the basicity of the proposed Ba2+-O2--Ba2+ motives is close to that of edge sites in BaO.

First principle chemical kinetics in zeolites: The Methanol-to-Olefin process as a case study

V. Van Speybroeck, K. De Wispelaere, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, M. Waroquier
Chemical Society Reviews
43 (21), 7326-7357
2014
A1

Abstract 

To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular dynamics methods complemented with additional techniques to simulate rare events are now gradually making their entrance within zeolite catalysis. Recent applications have already given a flavor of the benefit of such techniques to simulate chemical reactions in complex molecular environments.

Open Access version available at UGent repository

Exploring the Vibrational Fingerprint of the Electronic Excitation Energy via Molecular Dynamics

A. Van Yperen-De Deyne, T. De Meyer, E. Pauwels, A. Ghysels, K. De Clerck, M. Waroquier, V. Van Speybroeck, K. Hemelsoet
Journal of Chemical Physics
140 (2014), 134105
2014
A1

Abstract 

A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

Substituent effects on absorption spectra of pH-indicators: An experimental and computational study of sulfonphthaleine dyes

T. De Meyer, K. Hemelsoet, V. Van Speybroeck, K. De Clerck
Dyes and Pigments
102, 241-250
2014
A1

Abstract 

Sulfonphthaleine dyes are an important class of pH indicators, finding applications in novel (textile) sensors. In this paper, we present a combined experimental and theoretical study to elucidate the halochromic behaviour of a large set of sulfonphthaleine compounds. Starting from an experimental analysis consisting of UV/Vis spectroscopy, the pH region and the absorption wavelengths related to the colour shift are obtained and pKa values are derived. The effect of the substituents on the pH region can be traced back to their electron donating/withdrawing properties. Time-Dependent Density Functional Theory (TD-DFT) is able to adequately produce the trend in experimental wavelengths. Proton affinities are used to assess the effect of substituents on the pH region. The combination of theory and experiment is able to give a better understanding of the pH sensitivity; the methodology in this work will be useful in future dye design and is applicable to other dye classes as well.

Open Access version available at UGent repository

Bimetallic–Organic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene

Y-Y Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van der Voort
ChemCatChem
5 (12), 3657–3664
2013
A1

Abstract 

A gallium 2,2′-bipyridine-5,5′-dicarboxylate metal–organic framework (MOF), denoted as COMOC-4, has been synthesized by solvothermal synthesis. This MOF exhibits the same topology as MOF-253. CuCl2 was incorporated into COMOC-4 by a post-synthetic modification (PSM). The spectroscopic absorption properties of the MOF framework before and after PSM were compared with theoretical data obtained by employing molecular dynamics combined with time-dependent DFT calculations on both the as-synthesized and functionalized linker. The catalytic behavior of the resulting Cu2+@COMOC-4 material was evaluated in the aerobic oxidation of cyclohexene with isobutyraldehyde as a co-oxidant. In addition, the catalytic performance of Cu2+@COMOC-4 was compared with that of the commercially available Cu-BTC (BTC=benzene-1,3,5-tricarboxylate) MOF. Cu2+@COMOC-4 exhibits a good cyclohexene conversion and an excellent selectivity towards cyclohexene oxide in comparison to the Cu-based reference catalyst. Furthermore, no leaching of the active Cu sites was observed during at least four consecutive runs.

Identification of intermediates in zeolite-catalyzed reactions using in-situ UV/Vis micro-spectroscopy and a complementary set of molecular simulations

K. Hemelsoet, Q. Qian, T. De Meyer, K. De Wispelaere, B. De Sterck, B.M. Weckhuysen, M. Waroquier, V. Van Speybroeck
Chemistry - A European Journal
19, 49, 16595-16606
2013
A1

Abstract 

The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.

Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions

J. Van der Mynsbrugge, J. De Ridder, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Chemistry - A European Journal
19 (35), 11568-11576
2013
A1

Abstract 

The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.

Determining the Storage, Availability and Reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction Systems

I. Lezcano-Gonzalez, U. Deka, A. Van Yperen-De Deyne, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, B.M. Weckhuysen, A.M. Beale
Physical Chemistry Chemical Physics (PCCP)
16, 1639-1650
2014
A1

Abstract 

Three different types of NH3 species can be simultaneously present on Cu2+-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4+), formed on the Bronsted acid sites, [Cu(NH3)(4)](2+) complexes, resulting from NH3 coordination with the Cu2+ Lewis sites, and NH3 adsorbed on extra-framework Al ( EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4+ ions react very slowly in comparison to NH3 coordinated to Cu2+ ions and are likely to contribute little to the standard NH3-SCR process, with the Bronsted groups acting primarily as NH3 storage sites. The availability/ reactivity of NH4+ ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu2+, accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4+ ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems.

Bipyridine-Based Nanosized Metal–Organic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study

Y-Y Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van der Voort
Journal of Physical Chemistry C
117 (21), 11302–11310
2013
A1

Abstract 

A gallium 2,2′-bipyridine-5,5′-dicarboxylate metal-organic framework, Ga(OH)(bpydc), denoted as COMOC-4 (COMOC = Center for Ordered Materials, Organometallics and Catalysis, Ghent University) has been synthesized via solvothermal synthesis procedure. The structure has the topology of an aluminum 2,2′-bipyridine-5,5′-dicarboxylate, the so-called MOF-253. TEM and SEM micrographs show the COMOC-4 crystals are formed in nanoplates with uniform size of 30-50 nm. The UV-Vis spectra of COMOC-4 in methanol solution show maximal electronic absorption at 307 nm. This results from linker to linker transitions as elucidated by time-dependent density functional theory simulations on the linker and COMOC-4 cluster models. When excited at 400 nm, COMOC-4 displays an emission band centered at 542 nm. Upon immersion in different solvents, the emission band for the framework is shifted in the range of 525~548 nm, depending on the solvent. After incorporating Eu3+ cations, the emission band of the framework is shifted to even shorter wavelengths (505 nm). By varying the excitation wavelengths from 250 to 400 nm, we can fine-tune the emission from red to yellowish green in the CIE diagram. The luminescence behavior of Eu3+ cations is well preserved and the solid state luminescence lifetimes of λ1 = 45 µs (35.4 %) and λ2 = 162 µs (64.6 %) are observed.

Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34

K. De Wispelaere, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
305, 76-80
2013
A1

Abstract 

The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein a first principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between an sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.

Open Access version available at UGent repository

Pages

Subscribe to RSS - K. Hemelsoet