## Ab initio EPR study of S and Se defects in alkali halides

### Abstract

Calculations using density functional theory are performed to study the electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) properties of S and Se impurities in alkali halide lattices. Cluster in vacuo models are used to describe the defect and the lattice surroundings. The trivacancy defect model proposed in the literature is able to reproduce both the experimental principal values and directions of the g tensor for S and Se defects doped in alkali halides. The alternative monovacancy model gives rise to important discrepancies with experiment and can be discarded. For the KCl lattice, the hyperfine tensors of the S and Semolecular ions also agree well with the available experimental data, giving further evidence to the trivacancy model. In addition, for NaCl:S and KCl:S computational results for the 23Na and 35Cl superhyperfine and quadrupole tensors are compared with experimental ENDOR parameters. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005