D. De Vos

Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks

J. Hajek, M. Vandichel, B. Van de Voorde, B. Bueken, D. De Vos, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
331, 1-12
2015
A1

Abstract 

A full mechanistic investigation is proposed for the industrially important cross-aldol condensation reaction of heptanal with benzaldehyde on the UiO-66 and the amino-functionalized UiO-66-NH2 metal–organic frameworks to form jasminaldehyde. Several experimental studies indicate that the activity for the aldol condensation reaction can be increased by proper functionalization of the material, e.g. by introducing an additional basic amino site and thus creating a bifunctional acid–base catalyst for the aldol condensation. The precise molecular level origin for this behavior is to date unclear. Herein state-of-the-art Density-Functional Theory (DFT) calculations have been performed to unravel the mechanism of the cross- and self-aldol condensations of benzaldehyde and propanal. To this end free energy calculations have been performed on both extended cluster and periodic models. It is found that the mechanism on both catalysts is essentially the same, although a slightly stronger adsorption of the reactants and slightly lower barriers were found on the amino functionalized material, pointing toward higher initial activities. New experiments were performed to confirm these observations. It is indeed found that the initial activity toward cross-aldol condensation on the amino functionalized material is higher, although after about 40 min of reaction both materials become equally active. Our results furthermore point out that the basic amino groups may promote side reactions such as imine formation, which is induced by water. The study as presented can assist to engineer materials at the molecular level toward the desired products.

Open Access version available at UGent repository

Active site engineering in UiO-66 type metal-organic frameworks by intentional creation of defects: a theoretical rationalization

M. Vandichel, J. Hajek, F. Vermoortele, D. De Vos, M. Waroquier, V. Van Speybroeck
CrystEngComm
17 (2), 395-406
2015
A1

Abstract 

The catalytic activity of the Zr-benzenedicarboxylate (Zr-BDC) UiO-66 can be drastically increased in the absence of part of the linkers, as it removes the full coordination of the framework metal ions and leads to open sites. As a result, metal centers become more accessible and thus more active for Lewis acid catalysed reactions. Addition of modulators (MDL) to the synthesis mixture can create more linker deficiencies (Vermoortele et al., J Am Chem Soc, 2013, 135, 11465) and can lead to a significant increase of the catalytic activity due to the creation of a larger number of open sites. In this paper, we rationalize the function of the modulators under real synthesis conditions by the construction of free energy diagrams. The UiO-66 type materials form a very appropriate test case as the effect of addition of modulators hydrochloric acid (HCl) and trifluoroacetate (TFA) has been intensively investigated experimentally for the synthesis process and post-synthetic thermal activation. In synthesis conditions, direct removal of BDC linkers requires a high free energy but replacement of such linker by one or more TFA species might occur especially at high TFA:BDC ratios in the reaction mixture. The presence of HCl furthermore enhances the creation of defect structures. Post-synthesis activation procedures at higher temperatures lead to a substantial removal of the species coordinated to the Zr bricks creating open metal sites. A mechanistic pathway is presented for the dehydroxylation process of the hexanuclear Zr cluster. For the citronellal cyclization, we show that the presence of some residual TFA in the structure may lead to faster reactions in complete agreement with experiment. Hirshfeld-e partial charges for the Zr ions have been computed to investigate their sensitivity to substituent effects; a strong correlation with the experimental Hammett parameters, and with the rates of the citronellal cyclization is found. The theoretical rationalization may serve as a basis for detailed active site engineering studies.

Open Access version available at UGent repository

Active site engineering in UiO-66 type Metal Organic Frameworks by intentional creation of defects : A theoretical rationalization

M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D. De Vos, V. Van Speybroeck
CrystEngComm
First published online 15 Sep 2014
2014
A1
Published while none of the authors were employed at the CMM

Abstract 

The catalytic activity of the Zr-benzenedicarboxylate (Zr-BDC) UiO-66 can be drastically increased in the absence of part of the linkers, as it removes the full coordination of the framework metal ions and leads to open sites. As a result, metal centers become more accessible and thus more active for Lewis acid catalysed reactions. Addition of modulators (MDL) to the synthesis mixture can create more linker deficiencies (Vermoortele et al., J Am Chem Soc, 2013, 135, 11465) and can lead to a significant increase of the catalytic activity due to the creation of a larger number of open sites. In this paper, we rationalize the function of the modulators under real synthesis conditions by the construction of free energy diagrams. The UiO-66 type materials form a very appropriate test case as the effect of addition of modulators HCl and trifluoroacetate (TFA) has been intensively investigated experimentally for the synthesis process and post-synthetic thermal activation. In synthesis conditions, direct removal of BDC linkers requires a high free energy but replacement of such linker by one or more TFA species might occur especially at high TFA:BDC ratios in the reaction mixture. The presence of HCl furthermore enhances the creation of defect structures. Post-synthesis activation procedures at higher temperatures lead to a substantial removal of the species coordinated to the Zr bricks creating open metal sites. A mechanistic pathway is presented for the dehydroxylation process of the hexanuclear Zr cluster. For the citronellal cyclization, we show that the presence of some residual TFA in the structure may lead to faster reactions in complete agreement with experiment. Hirshfeld-e partial charges for the Zr ions have been computed to investigate their sensitivity to substituent effects; a strong correlation with the experimental Hammett parameters, and with the rates of the citronellal cyclization is found. The theoretical rationalization may serve as a basis for detailed active site engineering studies.

Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions

P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, D. Roeffaers, D. De Vos
Chemical Science
5 (11), 4517-4524
2014
A1

Abstract 

A new concept has been developed for generating highly dispersed base sites on metal-organic framework (MOF) lattices. The base catalytic activity of two alkaline earth MOFs, M2(BTC)(NO3)(DMF) (M = Ba or Sr, H3BTC = 1,3,5-benzenetricarboxylic acid, DMF = N,N-dimethylformamide) was studied as a function of their activation procedure. The catalytic activity in Knoevenagel condensation and Michael addition reactions was found to increase strongly with activation temperature. Physicochemical characterization using FTIR, 13C CP MAS NMR, PXRD, XPS, TGA-MS, SEM, EPR, N2 physisorption and nitrate content analysis shows that during activation, up to 85 % of the nitrate anions are selectively removed from the structure and replaced with other charge compensating anions such as O2-. The defect sites generated via this activation act as new strong basic sites within the catalyst structure. A fluorescence microscopic visualization of the activity convincingly proves that the activity is exclusively associated with the hexagonal crystals, and that reaction proceeds inside the crystal’s interior. Theoretical analysis of the Ba-material shows that the basicity of the proposed Ba2+-O2--Ba2+ motives is close to that of edge sites in BaO.

Metal-dioxidoterephthalate MOFs of the MOF-74 type: microporous basic catalysts with well-defined active sites

P. Valvekens, M. Vandichel, M. Waroquier, V. Van Speybroeck, D. De Vos
Journal of Catalysis
317, 1–10
2014
A1

Abstract 

The hybrid frameworks M2dobdc (dobdc4− = 2,5-dioxidoterephthalate, M2+ = Mg2+, Co2+, Ni2+, Cu2+ and Zn2+), commonly known as CPO-27 or MOF-74, are shown to be active catalysts in base-catalyzed reactions such as Knoevenagel condensations or Michael additions. Rather than utilizing N-functionalized linkers as a source of basicity, the intrinsic basicity of these materials arises from the presence of the phenolate oxygen atoms coordinated to the metal ions. The overall activity is due to a complex interplay of the basic properties of these structural phenolates and the reactant binding characteristics of the coordinatively unsaturated sites. The nature of the active site and the order of activity between the different M2dobdc materials were rationalized via computational efforts; the most active material, both in theory and in experiment, is the Ni-containing variant. The basicity of Ni2dobdc was experimentally proven by chemisorption of pyrrole and observation by IR spectroscopy.

Open Access version available at UGent repository

Synthesis modulation as a tool to increase the catalytic activity of MOFs: the unique case of UiO-66(Zr)

F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. De Vos
JACS (Journal of the American Chemical Society)
135 (31), 11465–11468
2013
A1

Abstract 

The catalytic activity of the zirconium terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach. The combined use of trifluoroacetic acid and HCl during the synthesis results in a highly crystalline material, with partial substitution of terephthalates by trifluoroacetate. Thermal activation of the material leads not only to dehydroxylation of the hexanuclear Zr cluster but also to post-synthetic removal of the trifluoroacetate groups, resulting in a more open framework with a large number of open sites. Consequently, the material is a highly active catalyst for several Lewis acid catalyzed reactions.

Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization

M. Vandichel, F. Vermoortele, S. Cottenie, D. De Vos, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
305, 118-129
2013
A1

Abstract 

Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH) and the heterogeneous metal-organic framework Cu3BTC2 (BTC = benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereo-isomer (> 99 %). The performance of the catalysts was evaluated as a function of temperature, which revealed that higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective.

Open Access version available at UGent repository

Host-guest and guest-guest interactions between xylene isomers confined in the MIL-47(V) pore system

A. Ghysels, M. Vandichel, T. Verstraelen, M. van der Veen, D. De Vos, M. Waroquier, V. Van Speybroeck
Theoretical Chemistry Accounts
131 (7) 1234-1246
2012
A1

Abstract 

The porous MIL-47 material shows a selective adsorption behavior for para-, ortho-, and meta-isomers of xylenes, making the material a serious candidate for separation applications. The origin of the selectivity lies in the differences in interactions (energetic) and confining (entropic). This paper investigates the xylene–framework interactions and the xylene–xylene interactions with quantum mechanical calculations, using a dispersion-corrected density functional and periodic boundary conditions to describe the crystal. First, the strength and geometrical characteristics of the optimal xylene–xylene interactions are quantified by studying the pure and mixed pairs in gas phase. An extended set of initial structures is created and optimized to sample as many relative orientations and distances as possible. Next, the pairs are brought in the pores of MIL-47. The interaction with the terephthalic linkers and other xylenes increases the stacking energy in gas phase (−31.7 kJ/mol per pair) by roughly a factor four in the fully loaded state (−58.3 kJ/mol per xylene). Our decomposition of the adsorption energy shows various trends in the contributing xylene–xylene interactions. The absence of a significant difference in energetics between the isomers indicates that entropic effects must be mainly responsible for the separation behavior.

Open Access version available at UGent repository

Electronic effects of linker substitution on Lewis acid catalysis with Metal-organic frameworks

F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. De Vos
Angewandte Chemie int. Ed.
51(20), 4887-4890
2012
A1

Abstract 

Functionalized linkers can greatly increase the activity of metal–organic framework (MOF) catalysts with coordinatively unsaturated sites. A clear linear free-energy relationship (LFER) was found between Hammett σm values of the linker substituents X and the rate kX of a carbonyl-ene reaction. This is the first LFER ever observed for MOF catalysts. A 56-fold increase in rate was found when the substituent is a nitro group.

Insights on the adsorption behavior of aromatics in MIL-47 and MIL-53 from a theoretical perspective

ISBN/ISSN:
Talk

Conference / event / venue 

11th Netherlands Catalysis and Chemistry Conference (NCCC-XI)
Noordwijkerhout, The Netherlands
Monday, 1 March, 2010 to Wednesday, 3 March, 2010

Pages

Subscribe to RSS - D. De Vos