Modeling the influence of resonance stabilization on the kinetics of hydrogen abstractions

M. Sabbe, A.G. Vandeputte, M-F. Reyniers, M. Waroquier, G.B. Marin
Physical Chemistry Chemical Physics (PCCP)
12, 1278-1298


Resonance stabilization of the transition state is one of the key factors in modeling the kinetics of hydrogen abstraction reactions between hydrocarbons. A group additive model is developed which allows the prediction of rate coefficients for bimolecular hydrogen abstraction reactions over a broad range of hydrocarbons and hydrocarbon radicals between 300 and 1300 K. Group additive values for 50 groups are determined from rate coefficients determined using the high level CBS-QB3 ab initio method, corrected for tunneling and the hindered internal rotation around the transitional bond. Resonance and hyperconjugative stabilization of the transition state is accounted for by introducing 4 corrections based on the structure of the reactive moiety of the transition state. The corrections, fitted to a set of 28 reactions, are temperature-independent and reduce the mean absolute deviation on Ea to 0.7 kJ mol−1 and to 0.05 for log A. Tunneling contributions are accounted for by using a fourth order polynomial in the activation energy. Final validation for 19 reactions yields a mean factor of deviation between group additive prediction and ab initio calculation of 2.4 at 300 K and 1.8 at 1000 K. In comparison with 6 experimental rate coefficients (600–719 K), the mean factor of deviation is less than 3.