Insight into the Effect of Water on the Methanol-to-Olefins Conversion in H-SAPO-34 from Molecular Simulations and in Situ Microspectroscopy

K. De Wispelaere, C.S. Wondergem, B. Ensing, K. Hemelsoet, E.J. Meijer, B.M. Weckhuysen, V. Van Speybroeck, J. Ruiz-Martinez
ACS Catalysis
6, 1991-2002


The role of water in the methanol-to-olefins (MTO) process over H-SAPO-34 has been elucidated by a combined theoretical and experimental approach, encompassing advanced molecular dynamics simulations and in-situ micro-spectroscopy. First principle calculations at the molecular level point out that water competes with methanol and propene for direct access to the Brønsted acid sites. This results in less efficient activation of these molecules, which are crucial for the formation of the hydrocarbon pool. Furthermore, lower intrinsic methanol reactivity towards methoxide formation has been observed. These observations are in line with a longer induction period observed from in-situ UV-Vis micro-spectroscopy experiments. These experiments revealed a slower and more homogeneous discoloration of H-SAPO-34, while in-situ confocal fluorescence microscopy confirmed the more homogeneous distribution and larger amount of MTO intermediates when co-feeding water. As such it is show that water induces a more efficient use of the H-SAPO-34 catalyst crystals at the microscopic level. The combined experimental theoretical approach gives a profound insight into the role of water on the catalytic process at the molecular and single particle level.