Ab Initio Study of Free-Radical Polymerization: Polyethylene Propagation Kinetics

K. Van Cauter, V. Van Speybroeck, P. Vansteenkiste, M-F. Reyniers, M. Waroquier
7 (1), 131-140


The chain-length dependence of the propagation rate coefficient for the free-radical polymerization of ethylene was investigated on an ab initio basis. Polyethylene was chosen as a test system because of its structural simplicity. Ab initio density functional theory at the B3LYP/6-31g(d) level was applied to study the kinetics of a set of addition reactions of a systematically growing radical alkyl chain to ethylene. These reactions are propagation steps in the free-radical polymerization of ethylene. Special attention was paid to low normal modes corresponding to internal rotations (IR), since the latter are important for an accurate description of the partition functions. The effect of coupling of the IR modes is also discussed. A comparison is made with the propagation rate constant derived from experiment. The results indicate that the propagation rate coefficient has largely converged by the hexyl radical stage, though a weaker chain-length dependence of kpfor longer chains was detected.