L. Vanduyfhuys

Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion.

S.M.J. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, V. Van Speybroeck
Chemistry of Materials
28 (16), 5721-5732
2016
A1

Abstract 

In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.

Open Access version available at UGent repository

Minimal Basis Iterative Stockholder: Atoms-in-Molecules for Force-Field Development

T. Verstraelen, S. Vandenbrande, F. Heidar-Zadeh, L. Vanduyfhuys, V. Van Speybroeck, M. Waroquier, P.W. Ayers
Journal of Chemical Theory and Computation (JCTC)
2016
A1

Abstract 

Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g. obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Sheffler scheme for dispersion interactions.

Exploring the flexibility of MIL-47(V)-type materials using force field molecular dynamics simulations

J. Wieme, L. Vanduyfhuys, S.M.J. Rogge, M. Waroquier, V. Van Speybroeck
Journal of Physical Chemistry C
120 (27), 14934-14947
2016
A1

Abstract 

The flexibility of three MIL-47(V)-type materials (MIL-47, COMOC-2 and COMOC-3) has been explored by constructing the pressure-versus-volume and free energy-versus-volume curves at various temperatures ranging from 100 K to 400 K. This is done with first-principles based force fields using the recently proposed QuickFF parameterization protocol. Specific terms were added for the materials at hand to describe the asymmetry of the one-dimensional vanadium-oxide chain and to account for the flexibility of the organic linkers. The force fields are used in a series of molecular dynamics simulations at fixed volumes, but varying unit cell shapes. The three materials show a distinct pressure-versus-volume behavior, which underlines the ability to tune the mechanical properties by varying the linkers towards different applications such as nanosprings, dampers and shock absorbers.

A breathing zirconium metal-organic framework with reversible loss of crystallinity by correlated nanodomain formation

B. Bueken, F. Vermoortele, M.J. Cliffe, M.T. Wharmby, D. Foucher, J. Wieme, L. Vanduyfhuys, C. Martineau, N. Stock, F. Taulelle, V. Van Speybroeck, A.L. Goodwin, D. De Vos
Chemistry - A European Journal
2016, 22, 1-5
2016
A1

Abstract 

The isoreticular analogue of the metal–organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7–10 unit cells.

Is the error on first-principles volume predictions absolute or relative?

K. Lejaeghere, L. Vanduyfhuys, T. Verstraelen, V. Van Speybroeck, S. Cottenier
Computational Materials Science
117, 390-396
2016
A1

Abstract 

Many benchmarks of density-functional theory with respect to experiment suggest the error on predicted equilibrium volumes to scale with the volume. Relative volume errors are therefore often used as a decisive argument to select one exchange-correlation functional over another. We show that the error on the volume (after correcting for systematic deviations) is only approximately relative. A simple analytic model, validated by rigorous Monte Carlo simulations, reveals that a more accurate error estimate can be derived from the inverse of the bulk modulus. This insight is not only instrumental for the selection or design of suitable functionals. It also calls for a new attitude towards computational errors: to report computational errors on electronic-structure calculations, identify systematic deviations and distinguish between relative and absolute effects. (C) 2016 Elsevier B.V. All rights reserved.

Open Access version available at UGent repository

Vibrational fingerprint of the absorption properties of UiO-type MOF materials

A. Van Yperen-De Deyne, K. Hendrickx, L. Vanduyfhuys, G. Sastre, P. Van der Voort, V. Van Speybroeck, K. Hemelsoet
Theoretical Chemistry Accounts
135, 4, 102
2016
A1

Abstract 

The absorption properties of UiO-type metal–organic frameworks are computed using TD-DFT simulations on the organic linkers. A set of nine isoreticular structures, including the UiO-66 and UiO-67 materials and functionalized variants, are examined. The excitation energies from a static geometry optimization are compared with dynamic averages obtained from sampling the ground-state potential energy surface using molecular dynamics. The vibrational modes that impact the excitation energy are identified. This analysis is done using a recently proposed tool based on power spectra of the velocities and the excitation energies. The applied procedure allows including important factors influencing the absorption spectra, such as the periodic framework, linker variation and dynamical effects including harmonic and anharmonic nuclear motions. This methodology allows investigating in detail the vibrational fingerprint of the excitation energy of advanced materials such as MOFs and gives perspectives to tailor materials toward new light-based applications.

Open Access version available at UGent repository

Mechanical energy storage performance of an aluminum fumarate metal-organic framework

P.G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J.-P. Itié, P. Fabry, N. Guillou, T. Devic, P.L. Llewellyn, V. Van Speybroeck, C. Serre, G. Maurin
Chemical Science
7, 446-450
2016
A1

Abstract 

The aluminum fumarate MOF A520 or MIL-53-FA is revealed to be a promising material for mechanical energy-related applications with performances in terms of work and heat energies which surpass those of any porous solids reported so far. Complementary experimental and computational tools are deployed to finely characterize and understand the pressure-induced structural transition at the origin of these unprecedented levels of performance.

Open Access version available at UGent repository

A comparison of barostats for the mechanical characterization of metal-organic frameworks

S.M.J. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen, G. Maurin, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
11 (12), 5583-5597
2015
A1

Abstract 

In this paper, three barostat coupling schemes for pressure control, which are commonly used in molecular dynamics simulations, are critically compared to characterise the rigid MOF-5 and the flexible MIL-53(Al) metal-organic frameworks. We investigate the performance of the three barostats, the Berendsen, the Martyna-Tuckerman-Tobias-Klein (MTTK) and the Langevin coupling methods, in reproducing the cell parameters and the pressure versus volume behaviour in isothermal-isobaric simulations. A thermodynamic integration method is used to construct the free energy profiles as a function of volume at finite temperature. It is observed that the aforementioned static properties are well reproduced with the three barostats. However, for static properties depending nonlinearly on the pressure, the Berendsen barostat might give deviating results as it suppresses pressure fluctuations more drastically. Finally, dynamic properties, which are directly related to the fluctuations of the cell, such as the time to transition from the large-pore to the closed-pore phase, cannot be well reproduced by any of the coupling schemes.

Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction

T. Bogaerts, L. Vanduyfhuys, D.E.P. Vanpoucke, J. Wieme, M. Waroquier, P. Van der Voort, V. Van Speybroeck
CrystEngComm
17, 8612–8622
2015
A1

Abstract 

The structural characterization of complex crystalline materials such as metal organic frameworks can prove a very difficult challenge both for experimentalists as for theoreticians. From theory, the flat potential energy surface of these highly flexible structures often leads to different geometries that are energetically very close to each other. In this work a distinction between various computationally determined structures is made by comparing experimental and theoretically derived X-ray diffractograms which are produced from the materials geometry. The presented approach allows to choose the most appropriate geometry of a MIL-47(V) MOF and even distinguish between different electronic configurations that induce small structural changes. Moreover the techniques presented here are used to verify the applicability of a newly developed force field for this material. The discussed methodology is of significant importance for modelling studies where accurate geometries are crucial, such as mechanical properties and adsorption of guest molecules.

Pages

Subscribe to RSS - L. Vanduyfhuys