Chiara Caratelli

PhD Fellow (EA17)
+32 (0)9 264 65 65
​​​​​Tech Lane Ghent Science Park, Campus A
Technologiepark 903, 9052 Zwijnaarde
Office n°021

Characterization of active sites and catalysis in MOFs using first principle methods

Metal Organic Frameworks (MOFs) are extremely versatile materials which are characterized by high porosity and surface area and are constructed by assembling molecular building blocks. In principle a huge number of structures may be fabricated using various building units. This structural diversity makes them particularly appealing for applications in various fields such as catalysis, storage, sensors… Particularly for catalysis, MOFs could be engineered to maximize the catalytic effect for a given reaction. Catalytic processes are currently crucial in any industrial application where chemical conversions are involved. The search of an optimal catalyst is at the heart of any chemical process. Given the extremely high number of possible structures and other complexities such as the presence of defects, molecularly tuning the catalyst is an ambitious challenge. However, understanding how these materials behave at the nanoscale and knowledge on the active site is of utmost importance to predict their behavior. Unfortunately it is impossible to isolate the defects from the rest, as what is obtained with experimental measures is an average of the whole system. Reaction mechanisms are too fast and too small to be observed directly, therefore making models is crucial for a complementary understanding and rationalization of what is observed experimentally.

In the past years computational power has grown exponentially, providing new opportunities to explore and understand chemical systems. Computational techniques allow the study of MOFs at the nanoscale, in order to understand and support experimental data, and make previsions. In this project, different advanced modeling techniques such as static period calculations and ab initio molecular dynamics simulations are used to study the adsorption phenomena and catalytic reactions on MOF materials, specifically on the defect sites. This will help to understand the active sites of MOFs at a molecular level, helping to gain insights into the behavior of these systems and helping to engineer materials for future technological applications. 

A1 publications

2017

Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification , C. Caratelli, J. Hajek, F. G. Cirujano, M. Waroquier, F. X. Llabres i Xamena, V. Van Speybroeck , Journal of Catalysis , 352, 401-414 , 2017 , IF: 7.354 , 4/135 [Q1]

A2 publications

B publications

P1 publications

Invited talks

Talks

2017

First principle characterization of active sites on UiO-66 and their role in the catalysis of Fischer esterification , C. Caratelli, J. Hajek, F. G. Cirujano, M. Waroquier, F. X. Llabres i Xamena, V. Van Speybroeck , NCCC XVIII , Noordwijkerhout, The Netherlands , Sun, 05/03/2017 to Tue, 07/03/2017

2016

Abstract title: Nature of active sites on UiO-66 and UiO-66-NH2 in the catalysis of Fischer esterification. , C. Caratelli, J. Hajek, G. Cirujano, A. Corma, M. Waroquier, F.X. Llabres i Xamena, V. Van Speybroeck , Chemical Research in Flanders Symposium (CRF-1) , Blankenberge , Mon, 24/10/2016 to Wed, 26/10/2016

Posters

2016

Catalytic sites on UiO-66 for Fischer esterification , C. Caratelli, J. Hajek, G. Cirujano, A. Corma, M. Waroquier, F.X. Llabres i Xamena, V. Van Speybroeck , IAP meeting , Liege , Mon, 12/09/2016
Catalytic role of UiO-66 and UiO-66-NH2 in Fischer esterification: a mechanistic study , C. Caratelli, J. Hajek, G. Cirujano, A. Corma, M. Waroquier, F.X. Llabres i Xamena, V. Van Speybroeck , NCCC XVII , Noordwijkerhout, The Netherlands , Mon, 07/03/2016 to Wed, 09/03/2016