The nature of extraframework aluminum species and Brønsted acid site interactions under catalytic operating conditions

J. L. Mancuso, V. Van Speybroeck
Journal of Catalysis
429, 115211
2024
A1

Abstract 

A systematic investigation of hydrated extraframework aluminum (EFAl) species interacting with Brønsted acid sites (BAS) in H-ZSM-5 is presented to understand the cooperative active site structure under catalytic operating conditions. Static models of EFAl species confined in the H-ZSM-5 unit cell show that isolated BAS protonate neutral EFAl species to form cations. Ab-initio molecular dynamics (AIMD) simulations and enhanced sampling performed at the temperature for methanol-to-hydrocarbon conversion reveal two regimes of stable EFAl species, namely the [Al(OH)2]+ ion existing with two bonds to the zeolite scaffold or as a pore-guest in the form of [Al(OH)2(H2O)2]+. Our results indicate that hydrogen-bonding plays a significant role in BAS-EFAl active site structure, especially at higher BAS density and that EFAl species can function as both Bronsted and Lewis acidic components to alter proton transfer kinetics as well as shape selectivity within these microporous solids.

Gold Open Access